Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

T. Ravishankar, ${ }^{\text {a }}$ K. Chinnakali, ${ }^{\text {a }}$ *

 N. Arumugam, ${ }^{\text {b }}$ P. C.Srinivasan, ${ }^{\text {b }}$ Anwar Usman ${ }^{\text {c }}$ and Hoong-Kun Fun ${ }^{\text {c* }}$
${ }^{\text {a }}$ Department of Physics, Anna University, Chennai 600 025, India, ${ }^{\text {b }}$ Department of Organic Chemistry, University of Madras, Guindy Campus, Chennai 600 025, India, and ${ }^{\mathrm{c}}$ X-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia

Correspondence e-mail: kali@annauniv.edu, hkfun@usm.my

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.051$
$w R$ factor $=0.123$
Data-to-parameter ratio $=16.3$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2,5-Dimethyl-7-phenyIsulfonyl-5,6-dihydro-indolo[2,3-c]benzazepin-12-one

The title compound, $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$, crystallizes with two independent molecules in the asymmetric unit, related by a non-crystallographic twofold rotation axis. The two molecules differ in the relative orientations of the phenylsulfonyl group and the indole ring system. In both molecules, the sevenmembered ring adopts a distorted boat conformation. The molecular packing is stabilized by $\mathrm{C}-\mathrm{H} \cdots \pi$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions.

Comment

Indole derivatives have been found to exhibit antibacterial, antifungal (Wang \& Ng, 2002; Singh et al., 2000; Tsotinis et al., 1997; Quetin-Leclercq et al., 1995) and antitumour activities (Andreani et al., 2001; Bradlow et al., 1999; Cirrincione et al., 1999; Tiwari et al., 1994; Dashwood et al., 1994). Certain indole derivatives are used as neuroprotectants (Stolc, 1999). Some of the indole alkaloids extracted from plants possess interesting cytotoxic, antitumour or antiparasitic properties (Quetin-Leclercq, 1994; Mukhopadhyay et al., 1981). Pyrido[1,2-a]indole derivatives have been identified as potent inhibitors of human immunodeficiency virus type 1 (Taylor et al., 1999), and 5-chloro-3-(phenylsulfonyl)indole-2-carboxamide is reported to be a highly potent non-nucleoside inhibitor of HIV-1 reverse transcriptase (Williams et al.,1993). The interaction of phenylsulfonylindole with calf thymus DNA has also been studied by spectroscopic methods (Sivaraman et al., 1996). The structure determination of the title compound, (I), was undertaken as part of our investigations of indole derivatives.

(I)

Received 15 June 2005 Accepted 30 June 2005 Online 6 July 2005

Figure 1
The asymmetric unit of (I), showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2
A view of the intramolecular interactions (dashed lines) in (I). Only the atoms involved in the interactions are labelled.
torsion angles of a cycloheptane ring adopting a boat conformation (Allen et al., 1993). The C16/C17/C19-C22 benzene ring forms a dihedral angle of $35.69(11)^{\circ}\left[37.00(11)^{\circ}\right.$ in B] with the mean plane through the indole ring system.

The two independent molecules are linked to form a threedimensional network via $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions (Table 2) involving atoms $\mathrm{H} 11 B, \mathrm{H} 12 B$ and $\mathrm{H} 24 D$ of molecule B, the $\mathrm{C} 3-\mathrm{C} 8$ benzene ring of molecule A (centroid $C g 2$) and the C9C 14 phenyl ring of molecule A (centroid $C g 1$). In addition, the molecular packing is stabilized by intermolecular $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ interactions (Table 2).

Experimental

A mixture of 1-phenylsulfonyl-2-[2'-acetamido-5'-methylbenzoyl]indole ($700 \mathrm{mg}, 0.16 \mathrm{mmol}$), chloromethyl methyl ether (20 ml) and acetic acid (20 ml) was stirred for 72 h at room temperature, then poured into ice-water and extracted with chloroform (100 ml). The residue was chromatographed over silica gel using 20% ethyl acetate in hexane as eluent, and crystallized by the slow evaporation method.

Crystal data

$\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$
$M_{r}=416.48$
Orthorhombic, Pna2 ${ }_{1}$
$a=15.6032$ (7) \AA
$b=15.9227$ (7) \AA
$c=16.3694$ (7) \AA
$V=4066.9(3) \AA^{3}$
$Z=8$
$D_{x}=1.360 \mathrm{Mg} \mathrm{m}^{-3}$

Mo $K \alpha$ radiation

Cell parameters from 8072 reflections
$\theta=2.2-28.3^{\circ}$
$\mu=0.19 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Block, yellow
$0.50 \times 0.40 \times 0.40 \mathrm{~mm}$

Data collection

Siemens SMART CCD areadetector diffractometer ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996)
$T_{\text {min }}=0.912, T_{\text {max }}=0.929$
24897 measured reflections

8896 independent reflections 6111 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.030$
$\theta_{\text {max }}=28.3^{\circ}$
$h=-19 \rightarrow 20$
$k=-21 \rightarrow 20$
$l=-21 \rightarrow 14$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.123$
$S=1.09$
8896 reflections
545 parameters
H-atom parameters constrained

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0538 P)^{2}\right. \\
& +0.5548 P \text {] } \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\text {max }}=0.001 \\
& \Delta \rho_{\max }=0.19 \mathrm{e}^{-3}{ }^{-3} \\
& \Delta \rho_{\text {min }}=-0.29 \mathrm{e}^{-3} \\
& \text { Absolute structure: Flack (1983), } \\
& \text { with } 3692 \text { Friedel pairs } \\
& \text { Flack parameter: } 0.01 \text { (7) }
\end{aligned}
$$

Data collection: SMART (Siemens, 1996); cell refinement: SAINT (Siemens, 1996); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 1997); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2003).

HKF thanks the Malaysian Government and Universiti Sains Malaysia for research grant R\&D No. 305/PFIZIK/ 610961.

References

Allen, F. H., Howard, J. A. K. \& Pitchford, N. A. (1993). Acta Cryst. B49, 910928.

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-S19.

Andreani, A., Granaiola, M., Leoni, A., Locatelli, A., Morigi, R., Rambaldi, M., Giorgi, G., Salvini, L. \& Garaliene, V. (2001). Anticancer Drug Des. 16, 167-174.
Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bradlow, H. L., Sepkovic, D. W., Telang, N. T. \& Osborne, M. P. (1999). Ann. N. Y. Acad. Sci. 889, 204-213.

Cirrincione, G., Almerico, A. M., Barraja, P., Diana, P., Lauria, A., Passannanti, A., Musiu, C., Pani, A., Murtas, P., Minnei, C., Marongiu, M. E., \& La Colla, P. (1999). J. Med. Chem. 42, 2561-2568.

Dashwood, R. H., Fong, A. T., Arbogast, D. N., Bjeldanes, L. F., Hendricks, J. D. \& Bailey, G. S. (1994). Cancer Res. 54, 3617-3619.
Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
Flack, H. D. (1983). Acta Cryst. A39, 876-881.
Mukhopadhyay, S., Handy, G. A., Funayama, S. \& Cordell, G. A. (1981). J. Nat. Prod. 44, 696-700.
Quetin-Leclercq, J. (1994). J. Pharm. Belg. 49, 181-192.
Quetin-Leclercq, J., Favel, A., Balansard, G., Regli, P. \& Angenot, L. (1995). Planta Med. 61, 475-477.
Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. \& Fun, H.-K. (2003a). Acta Cryst. C59, o137-o140.
Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. \& Fun, H.-K. (2003b). Acta Cryst. E59, o1903-o1906.
Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. \& Fun, H.-K. (2005a). Acta Cryst. E61, o998-o1000.
Ravishankar, T., Chinnakali, K., Arumugam, N., Srinivasan, P. C., Usman, A. \& Fun, H.-K. (2005b). Acta Cryst. E61, o1184-o1186.
Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXTL. Version 5.10. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1996). SMART and SAINT. Versions 4.0. Siemens Analytical X-Ray Instruments Inc., Madison, Wisconsin, USA.
Singh, U. P., Sarma, B. K., Mishra, P. K. \& Ray, A. B. (2000). Folia Microbiol. 45, 173-176.
Sivaraman, J., Subramanian, K., Velmurugan, D., Subramanian, E. \& Seetharaman, J. (1996). J. Mol. Struct. 385, 123-128.
Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
Stolc, S. (1999). Life Sci. 65, 1943-1950.
Taylor, D. L., Ahmed, P. S., Chambers. P., Tyms, A. S., Bedard, J., Duchaine, J., Falardeau, G., Lavallee, J. F., Brown, W., Rando, R. F. \& Bowlin, T. (1999). Antiviral Chem. Chemother. 10, 79-86.
Tiwari, R. K., Guo, L., Bradlow, H. L., Telang, N. T. \& Osborne, M. P. (1994). J. Natl Cancer Inst. 86, 126-131.
Tsotinis, A., Varvaresou, A., Calogeropoulou, T., Siatra-Papastaikoudi, T. \& Tiligada, A. (1997). Arzneim. Forsch. (Drug Res.), 47, 307-310.
Wang, H. X. \& Ng, T. B. (2002). Comput. Biochem. Physiol. C. Toxicol. Pharmacol. 132, 261-268.
Williams, T. M., Ciccarone, T. M., MacTough, S. C., Rooney, C. S., Balani, S. K., Condra, J. H., Emini, E. A., Goldman, M. E., Greenlee, W. J. \& Kauffman, L. R. (1993). J. Med. Chem. 36, 1291-1294.

